Altech Batteries Ltd Stock Market Press Releases and Company Profile
Quarterly Activities Report
Quarterly Activities Report

Perth, Oct 28, 2020 AEST (ABN Newswire) - Altech Chemicals Ltd (googlechartASX:ATC) (googlechartA3Y:FRA) recently announced that it is in the final development stage of a high purity alumina (HPA) grade that is specifically designed for anode applications within lithium-ion batteries. This initiative is in response to lithium-ion battery anode development trends that Altech has identified in Europe from its engagement with potential HPA users, and from its work with research organisations such as the internationally renowned Fraunhofer-Gesellschaft Institute. This initiative also offers another potential avenue to secure a portion of future HPA production at a predetermined floor price, which would support project financial close.

HPA is commonly applied as a coating on the separator sheets used within a lithium-ion battery, as alumina coated separators improve battery performance, durability and overall safety.

However, there is an evolving use for alumina within the anode component because of the positive impacts that alumina coated graphite particles have on battery life and performance.

Lithium-ion battery anodes are typically composed of graphite.

In a lithium-ion battery, lithium ion losses initially present as inactive layers of lithium ions that form during the very first battery charge cycle, the losses then compound with each subsequent battery usage cycle. Typically, around 8% of lithium ions are lost during the very first battery charge cycle. This "first cycle capacity loss" or "first-cycle irreversibility" is a long recognised but as yet poorly resolved limitation that has plagued rechargeable lithium-ion batteries. Figure 2 shows the potential increase in battery life if the first cycle capacity loss can be reduced or eliminated, thereby allowing more lithium ions to participate in ongoing operation of the battery.

The Altech break-through

As a result of ground-breaking research and development work led by the Company's General Manager Operations and Marketing, Dr. Jingyuan Liu, Altech is now proceeding to an independent verification phase of its method for the alumina coating of graphite particles. University and laboratory verification of the process (patent pending) is due for completion during the next quarter, and Altech expects that positive verification will result in potential end-user trials, and eventually commercialisation of the process.

To view the Quarterly Report, please visit:
https://abnnewswire.net/lnk/32LA4D59


About Altech Batteries Ltd

Altech Chemical Ltd ASX:ATCAltech Batteries Limited (ASX:ATC) (FRA:A3Y) is a specialty battery technology company that has a joint venture agreement with world leading German battery institute Fraunhofer IKTS ("Fraunhofer") to commercialise the revolutionary CERENERGY(R) Sodium Alumina Solid State (SAS) Battery. CERENERGY(R) batteries are the game-changing alternative to lithium-ion batteries. CERENERGY(R) batteries are fire and explosion-proof; have a life span of more than 15 years and operate in extreme cold and desert climates. The battery technology uses table salt and is lithium-free; cobalt-free; graphite-free; and copper-free, eliminating exposure to critical metal price rises and supply chain concerns. 

The joint venture is commercialising its CERENERGY(R) battery, with plans to construct a 100MWh production facility on Altech's land in Saxony, Germany. The facility intends to produce CERENERGY(R) battery modules to provide grid storage solutions to the market.

https://twitter.com/altechbatteries https://www.facebook.com/AltechChemicals/ https://au.linkedin.com/company/altechbatteries abnnewswire.com 


Contact

Corporate
Iggy Tan
Managing Director
Altech Batteries Limited
Tel: +61-8-6168-1555
Email: info@altechgroup.com

Martin Stein
Chief Financial Officer
Altech Batteries Limited
Tel: +61-8-6168-1555
Email: info@altechgroup.com



ABN Newswire
ABN Newswire This Page Viewed:  (Last 7 Days: 6) (Last 30 Days: 30) (Since Published: 2732)